Nonlinear image estimation using piecewise and local image models
نویسندگان
چکیده
We introduce a new approach to image estimation based on a flexible constraint framework that encapsulates meaningful structural image assumptions. Piecewise image models (PIMs) and local image models (LIMs) are defined and utilized to estimate noise-corrupted images, PIMs and LIMs are defined by image sets obeying certain piecewise or local image properties, such as piecewise linearity, or local monotonicity. By optimizing local image characteristics imposed by the models, image estimates are produced with respect to the characteristic sets defined by the models. Thus, we propose a new general formulation for nonlinear set-theoretic image estimation. Detailed image estimation algorithms and examples are given using two PIMs: piecewise constant (PICO) and piecewise linear (PILI) models, and two LIMs: locally monotonic (LOMO) and locally convex/concave (LOCO) models. These models define properties that hold over local image neighborhoods, and the corresponding image estimates may be inexpensively computed by iterative optimization algorithms. Forcing the model constraints to hold at every image coordinate of the solution defines a nonlinear regression problem that is generally nonconvex and combinatorial. However, approximate solutions may be computed in reasonable time using the novel generalized deterministic annealing (GDA) optimization technique, which is particularly well suited for locally constrained problems of this type. Results are given for corrupted imagery with signal-to-noise ratio (SNR) as low as 2 dB, demonstrating high quality image estimation as measured by local feature integrity, and improvement in SNR.
منابع مشابه
Presentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملVolumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کاملQuick Estimation of Apple (Red Delicious and Golden Delicious) Leaf Area and Chlorophyll Content
ABSTRACT- The evaluation of leaf area and leaf nutritional value is important for crop growth modeling and estimations of its performance. The purpose of this study was to use image processing techniques to develop an economical method to ease the assessment of nutrient status and leaf area (LA) of plants and to compare the outcomes of this method with linear models. Leaf area and leaf chloroph...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 7 7 شماره
صفحات -
تاریخ انتشار 1998